Unilateral global bifurcation and nodal solutions for thep-Laplacian with sign-changing weight

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight

In this paper, we shall establish unilateral global bifurcation result for a class of fourthorder eigenvalue problems with sign-changing weight. Under some natural hypotheses on perturbation function, we show that lk;0 is a bifurcation point of the above problems and there are two distinct unbounded continua, Ck þ and Ck , consisting of the bifurcation branch Ck from lk;0 , wher e lk is the kth...

متن کامل

Multiplicity of Positive Solutions of laplacian systems with sign-changing weight functions

In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

multiplicity of positive solutions of laplacian systems with sign-changing weight functions

in this paper, we study the multiplicity of positive solutions for the laplacian systems with sign-changing weight functions. using the decomposition of the nehari manifold, we prove that an elliptic system has at least two positive solutions.

متن کامل

Positive Solutions for a Class of p-Laplacian Systems with Sign-Changing Weight

We consider the system ⎧ ⎨ ⎩ −Δ p u = λF (x, u, v), x ∈ Ω, −Δ q v = λH(x, u, v), x ∈ Ω, u = 0 = v, x ∈ ∂Ω, where F (x, u, v) = [g(x)a(u) + f (v)], H(x, u, v) = [g(x)b(v) + h(u)], Ω is a bounded domain in R N (N ≥ 1) with smooth boundary ∂Ω, λ is a real positive parameter and Δ s z = div (|∇z| s−2 ∇z), s > 1, (s = p, q) is a s-laplacian operator. Here g is a C 1 sign-changing function that may b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Variables and Elliptic Equations

سال: 2013

ISSN: 1747-6933,1747-6941

DOI: 10.1080/17476933.2013.791686